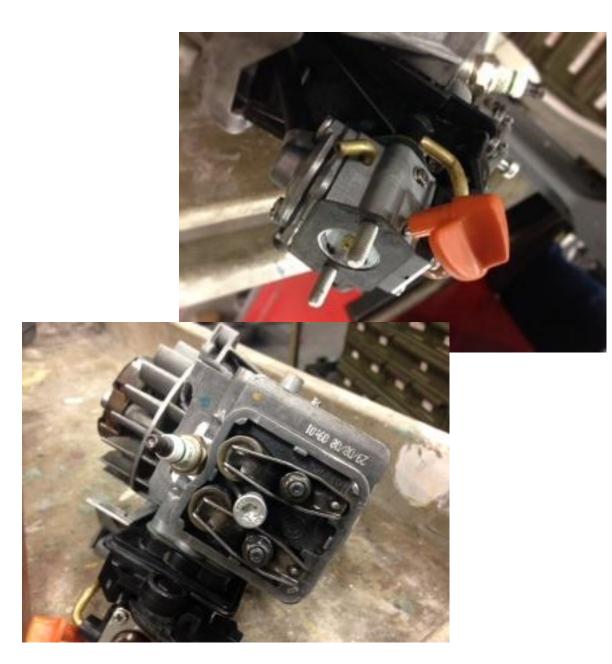
Aqua Scooter

Progress Report

Dylan Cannon, Darin Gilliam, Eli Palomares, Elizabeth Tyler, Jiyan Wang, Tyler Winston

January 19, 2014



NORTHERN

Overview

- Client Introduction
- Problem Definition
- Project Goal
- Objectives
- Tasks
- Constraints
- Final Considerations
- Analysis
- Current Status
- Conclusion
- References

Client Introduction

Aqua Scooter is a portable, gasoline powered water craft for individual use.

The client for this project, R.S.W. /D.I. Inc. is the owner and CEO of Aqua Scooter.

Problem Definition

Design a hydrodynamic, inexpensive, aesthetically pleasing Aqua Scooter, with a marine engine that complies with EPA regulations.

Project Goal

Need

 Current Aqua Scooter model does not meet EPA regulations

Goal

• Design an improved Aqua Scooter that exceeds EPA regulations

Objectives

- Design an aesthetically pleasing Aqua Scooter, that complies with EPA regulations
- The new design should be lightweight and provide similar thrust
- The system must be buoyant and relatively cheap to manufacture
- Must be safe for a child to use

Tasks

- Analyze and compare gasoline, propane, and butane 4-stroke engine concepts
- Quantify the ability for each fuel source to meet EPA regulations
- Calculate the drag coefficients for the two final outer shell designs
- Calculate thrust assuming a propeller that will generate a 5mph velocity

Constraints

- 1/2 gallon, plastic fuel tank
- Internal combustion powered
- Metal engine and muffler
 housing
- Starter assembly is plastic and metal

- Plastic prop protection
- Control handle included
- Throttle control
- Exhaust valve
- Must be 18 pounds or less
- Must provide at least 50 pounds thrust

Gantt Chart

	Name	Begin date	End date
0	Progress Report Presentation	1/20/15	1/20/15
0	Progress Report due	1/23/15	1/23/15
0	Modify Engine	1/26/15	2/13/15
0	Hardware Review 1	2/10/15	2/12/15
0	Testing	2/13/15	3/26/15
0	Staff Meeting	2/24/15	2/24/15
0	System Modification	2/24/15	3/13/15
0	Midpoint Presentation	3/10/15	3/10/15
0	Midpoint Report	3/13/15	3/13/15
0	Hardware Review 2	3/24/15	3/26/15
0	Operations Manual	3/27/15	4/3/15
0	Emission Test	3/27/15	4/3/15
0	UGRADS Poster	3/27/15	4/10/15
0	Staff Meeting	4/7/15	4/7/15
0	Walk-Through Presentation	4/14/15	4/14/15
0	UGRADS Presentation	4/24/15	4/24/15
0	Final Report	4/24/15	4/24/15

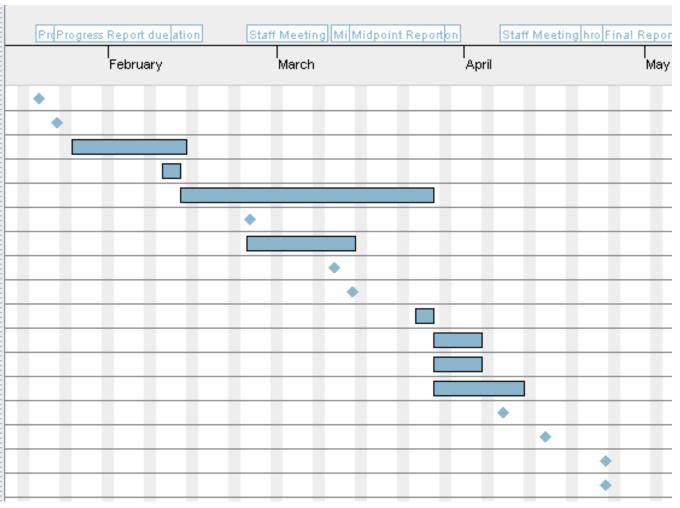


Table 1: Gantt Chart and Deliverable schedule.

Concept Analysis

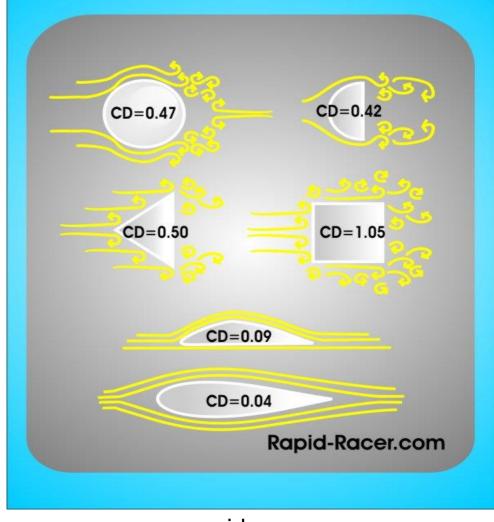
• Alternate Fuel Analysis

• Shell Analysis

Propane and Butane Analysis

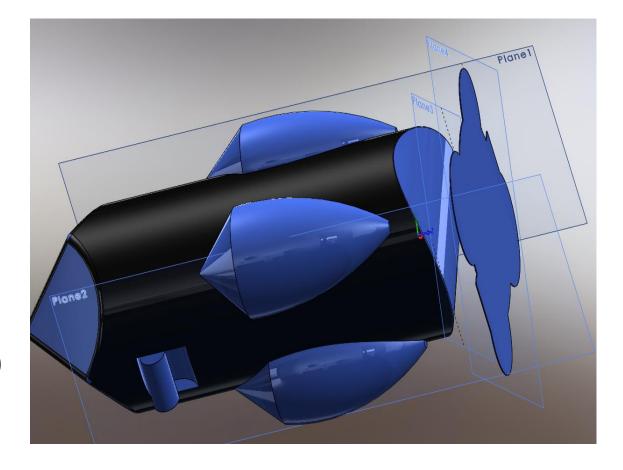
Assumptions

- Calculated using Honda GX25 converted to propane or butane
- Manufacturer rated @ 1 HP
- Running time of 3 hours
- Not Adjusted for Efficiency
- Results
 - Calculated weight of propane is 12.52 ounces
 - Calculated weight of butane is 12.50 ounces


Shell Analysis

Drag Force

 $F = 0.5\rho V^2 C_d A$


Where:

F = Drag force [N] $\rho = Density \left[\frac{kg}{m^3}\right]$ $V = Velocity \left[\frac{m}{s}\right]$ $C_d = Drag Coefficient [unitless]$ $A = Area orthogonal to flow [m^2]$

Shell Analysis- Triton

- Assumptions
- $C_d = 0.10$
- $A = 513.20in^2 = 0.3311m^2$
- $\rho = 999 \frac{kg}{m^3}$
- $V_e = 2.235 \left[\frac{m}{s}\right]$
- Drag Force
- $F = 0.5 \rho V^2 C_d A$
- $F = 0.5(999)(2.235^2)(.1)(0.3311)$
- F = 82.6N

Current Status on Shell Design

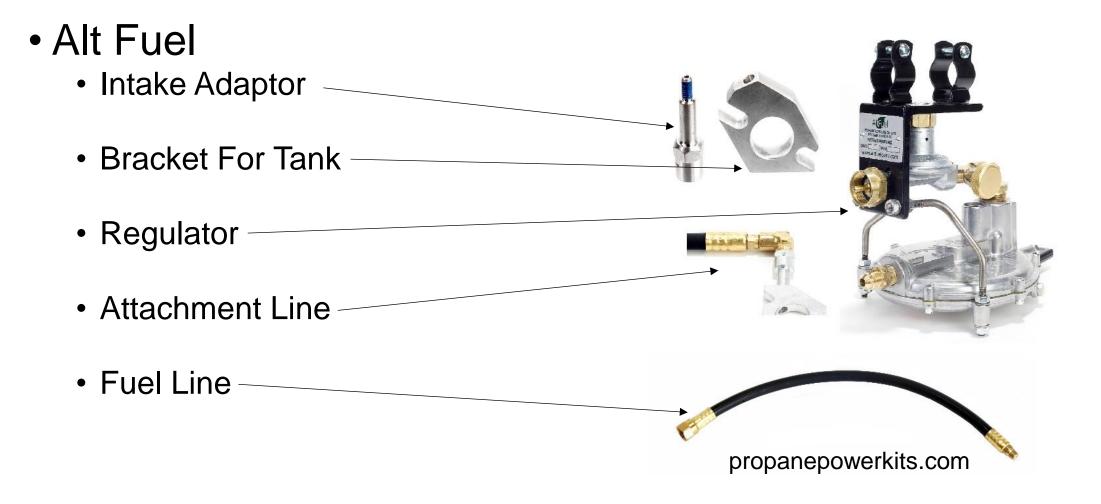
- 3-D Printing: Points to Consider
 - Where engine will be mounted
 - Shelled cut into halves
 - Lip added to attach halves
 - Scaled down for prototype

www.plastic-mart.com

Current Status Engine

Conversion Kits

Emission Testing
On-Site Testing


• 4-Stroke Engines

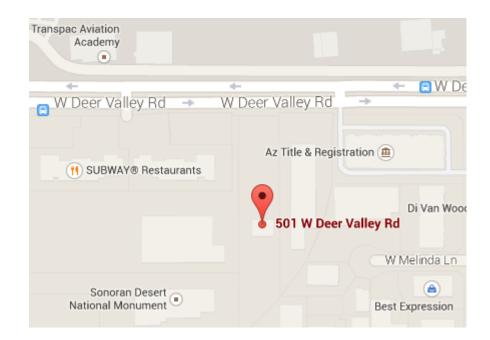
Testing Environment

• 2-Stroke Engines

Cost of Materials

Conversion Kits: Propane

Honda GX-25 4-Stroke Engine


- 1-HP
- 25cc Displacement
- 6.8lbs Dry Weight
- \$265.00

engines.honda.com

Emissions Testing

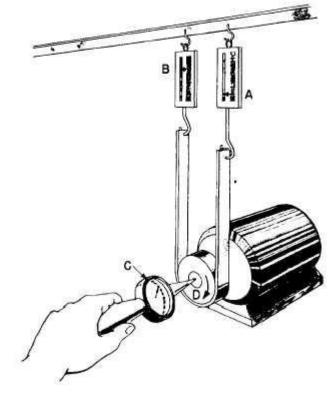
- On Location Testing
 - Deer Valley Emissions Test
 - 501West Deer Valley Road, Phoenix, AZ 85027
- Portable Testing
 - Nova
 - Quote: \$9,150

Campus Testing Environment

- 150 Gallon Tank
 - \$175.00
 - Check with Biology (waiting for response)

- Trough Pool
 - \$104.00
 - Used stores
 - Craigslist

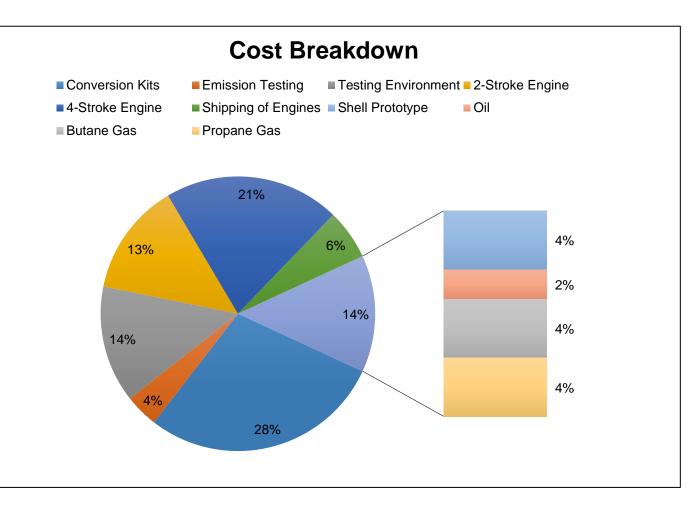
Load Efficiency Experiment


- Prony Brake Test
 - Requires:
 - 2 Force Scales (A & B)
 - Tachometer (C)
 - Pulley (D)
 - Belt

•
$$P = \frac{(F_A - F_B) * D}{t}$$

P = Power

- $F_i = Force measured from spring$
- D = Distance Pulley Traveled


t = time

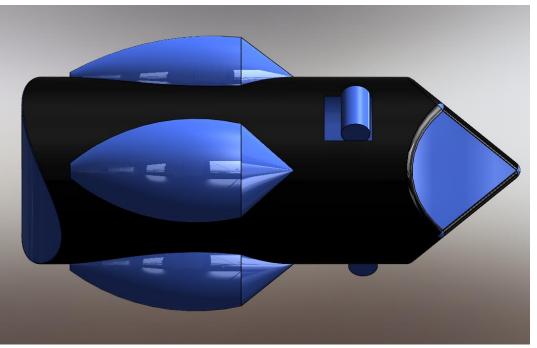
enginemechanics.tpub.com

Cost of Materials

Item	Budget Costs	Actual Costs	% of Total	% of Total
Conversion Kits	\$200.00	\$363.00	9.69%	28.58%
Emission Testing	\$1,000.00	\$50.00	48.43%	3.94%
Testing				
Environment	\$175.00	\$175.00	8.47%	13.78%
2-Stroke Engine	\$200.00	\$169.00	9.69%	13.31%
4-Stroke Engine	\$240.00	\$263.00	11.62%	20.71%
Shipping of				
Engines	\$75.00	\$75.00	3.63%	5.91%
Shell Prototype	\$50.00	\$50.00	2.42%	3.94%
Oil	\$25.00	\$25.00	1.21%	1.97%
Butane Gas	\$50.00	\$50.00	2.42%	3.94%
Propane Gas	\$50.00	\$50.00	2.42%	3.94%
	\$2,065.00	\$1,270.00		


Conclusion

The engine should be delivered within 2 weeks.


The team will create testing scenarios to establish the power and efficiency of the engine.

The conversion kit will be installed and a comparison between the power and efficiencies of the alternate fuels can be established.

The emissions from each fuel will be measured.

www.youtube.com/watch?v=QvUih9Y2Nmw

References

[1] http://www.cnet.com/news/aquascooter-the-manly-way-to-dive/

[2] B. Douville, P. Ouellette, A. Touchette and B. Ursu, "Performance and emissions of a two-stroke engine fueled using high-pressure direct injection of natural gas," in 1998 SAE International Congress and Exposition, February 23, 1998 - February 26, 1998, .

[3] P. Duret, A. Ecomard and M. Audinet, "A new two-stroke engine with compressed-air assisted fuel injection for high efficiency low emissions applications," in *International Congress and Exposition, February 29, 1988 -March 4,* 1988, .

[4] H. Huang, M. Jeng, N. Chang, Y. Peng, J. H. Wang and W. Chiang, "Improvement of exhaust emissions from a two-stroke engine by direct injection system," in *International Congress and Exposition, March 1, 1993 -March 5,* 1993, .

[5] W. Mitianiec, "Direct injection of fuel mixture in a spark ignition two-stroke engine," in SAE 2002 World Congress, March 4, 2002 - March 7, 2002, .

[6] K. Morikawa, H. Takimoto, T. Kaneko and T. Ogi, "A study of exhaust emission control for direct fuel injection two-stroke engine," in *Small Engine Technology Conference and Exposition, September 28, 1999 -September 30,* 1999, .

[7] P. Rochelle and W. Perrard, "Fuel consumption and emission reduction of a small two-stroke engine through air-assisted fuel injection and delayed-charging," in *International Congress and Exposition, March 1, 1999 -March 4,* 1999,.

[8] Stihl KM 130 R. Accessed 10 Oct 2014. *Firewood Hoarders Club.* http://firewoodhoardersclub.com/forums/index.php?threads/stihl-km-130r-4-mix-engine.3850/

[9] A. Dave, Development of a Reed Valve Model for Engine Simulations for Two-Stroke Engines, 1st ed., SAE International, 2004.

[10] http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node108.html

[11]https://www.youtube.com/watch?v=QvUih9Y2Nmw

References

[12] http://www.calor.co.uk/15kg-butane-gas-bottle.html

[13] http://www.plastic-mart.com/category/41/plastic-stock-tanks-water-troughs

[14] https://sites.google.com/a/altfuelconv.com/altfuel-llc/where-to-purchase

[15] https://www.propanecarbs.com/small_engines.html

[16] http://www.rapid-racer.com/aerodynamics.php

[17] http://www.homemodish.com/gorgeous-amazing-fish-tanks-design-ideas/wondrous-fish-aquarium-tank-inspiration/

[18] http://www.brandnewengines.com/21132-0559.aspx?gclid=Cj0KEQiAneujBRDcvL6f5uybhdABEiQA_ojMgghvNjmKx_PmQjxv0TEOpBZfypPHOrP6kIOj3nKbrBIa AvjO8P8HAQ

[19] http://engines.honda.com/models/model-detail/gx25

[20] http://enginemechanics.tpub.com/14037/css/14037_53.htm

[21] http://propanepowerkits.com/shop/index.php?main_page=products_new

Any Questions?